НОВОСТИ Впервые фотон телепортировали с одного чипа на другой

BDFINFO2.0
Оффлайн
Регистрация
14.05.16
Сообщения
11.398
Реакции
501
Репутация
0
Эксперимент провели специалисты из Бристольского университета. Новая технология поспособствует развитию квантовых компьютеров на кремниевых схемах. Рассказываем, как устроена их система. Также рассмотрим несколько сторонних проектов, связанных с квантовой телепортацией.


Фото — — CC BY / Фото изменено

В чем суть технологии


— это процесс, подразумевающий перенос квантового состояния на расстояние при помощи запутанных фотонов. Они разрушаются в точке отправления и воссоздаются в точке приема. В перспективе эту особенность для передачи информации.

Первой перенос частицы в пределах одного кремниевого чипа — на 6 мм — группа физиков из Швейцарской высшей технической школы Цюриха (ETH Zurich) в 2013-м.​

Но в конце прошлого года их коллеги из Бристоля усовершенствовали технологию и первыми в мире фотон между микросхемами. Это достижение — еще один шаг к разработке квантовых сетей и компьютеров на кремниевых чипах.

Как это работает


Она построена на нелинейных источниках фотонов и линейных квантовых схемах. Физики использовали миниатюрные передатчики и приёмники размером не более пяти миллиметров.

Сам процесс телепортации проходит в несколько этапов:

  • Источник генерирует две пары запутанных фотонов.
  • Они поступают в специальную схему, после прохождения которой их параметры измеряются и считываются сетью .
  • Один фотон отправляют к приемнику, установленному на другой микросхеме, по оптоволокну. Там его параметры вновь измеряются интерферометрами.

Специалисты Бристольского университета также провели эксперимент с четырьмя источниками и продемонстрировали состояние Гринбергера — Хорне — Целлингера ( ). Оно квантовой запутанностью системы минимум из трех кубитов.

Степень совпадения квантовых состояний при их переносе с чипа на чип составила 88,5%. Цифра сопоставима с аналогичным показателем для телепортации на одной микросхеме ( ). Такой точности достаточно, чтобы эффективно передавать информацию по оптоволоконным каналам. Но для реализации отказоустойчивого квантового компьютера, этот параметр должен достигнуть планки в 99%. Команда физиков отмечает, что продолжит исследования в этом направлении.

Другие эксперименты


Летом прошлого года инженеры из Йокогамского государственного университета в Японии телепортацию частицы света внутри алмаза. Используя микро- и радиоволны, исследователи связали спин электрона с ядерным спином углерода. Затем в систему ввели фотон – электрон сразу его поглотил и передал информацию о нем второй частице. По сути, инженерам удалось сформировать миниатюрный квантовый повторитель для развертки сетей.

В августе 2019-го китайские ученые — ячейку с тремя возможными состояниями. Для этого они собрали сложную оптическую систему из лазеров, лучевых делителей и кристаллов бората бария. Примерно в то же время аналогичный эксперимент интернациональная команда исследователей во главе с австрийским физиком Антоном Цейлингером (Anton Zeilinger).

vvmp6zmjcpeiqh5v_wvdngbyzj8.jpeg

Фото — — Unsplash


Ряд специалистов ведет разработки, связанные с телепортацией фотонов в космосе. Одним из первых в 2016 году такой спутник Китай. С помощью лазера он кубит на расстояние 1200 километров — с орбиты на принимающую станцию в Тибете.

Подобные технологии открывают путь к развертке глобальных квантовых сетей. Возможно, уже в ближайшем будущем они позволят объединить привычные нам компьютеры с квантовыми машинами на кремниевых компонентах.

gtdq_t6nnpp4kybo4h-ts1kr-zi.png
Мы в 1cloud.ru предлагаем услугу . Вы можете поднять удаленный VDS/VPS-сервер всего за две минуты. Новым клиентам — бесплатное тестирование.
b1vqyze3_esmgxgv168gj2lrbae.png
Мы оборудование enterprise-класса от Cisco, Dell, NetApp. Виртуализация построена на гипервизоре VMware vSphere.
 
Сверху Снизу