НОВОСТИ [Перевод] Системный таймер в Windows: большое изменение

NewsBot
Оффлайн

NewsBot

.
.
Регистрация
21.07.20
Сообщения
40.408
Реакции
1
Репутация
0
Поведение планировщика Windows значительно изменилось в Windows 10 2004 без каких-либо предупреждений и изменения документации. Вероятно, это поломает несколько приложений. Такое , но эта перемена посерьёзнее.

Если вкратце, то вызовы из одного процесса теперь влияют на другие процессы меньше, чем раньше, хотя эффект ещё присутствует.

Думаю, что новое поведение — это по сути улучшение, но оно странное, и заслуживает того, чтобы быть задокументированным. Честно предупреждаю — у меня только результаты собственных экспериментов, поэтому могу только догадываться о целях и каких-то побочных эффектах этого изменения. Если какие-либо из моих выводов неверны, пожалуйста, дайте знать.

Прерывания таймера и смысл их существования


6a6f9a70401056d13e03e7a1b0b9a536.png
Во-первых, немного контекста о дизайне операционных систем. Желательно, чтобы программа могла засыпать, а позже — просыпаться. На самом деле это не следует делать очень часто — потоки обычно ждут событий, а не таймеров, — но иногда необходимо. Итак, в Windows есть функция Sleep — передайте ей желаемую продолжительность сна в миллисекундах, и она разбудит процесс:

Sleep(1);

Стоит подумать о том, как это реализуется. В идеале при вызове Sleep(1) процессор переходит в спящий режим. Но как операционная система разбудит поток, если процессор спит? Ответ — аппаратные прерывания. ОС программирует микросхему — аппаратный таймер, который затем запускает прерывание, которое пробуждает процессор, и ОС затем запускает ваш поток.

Функции WaitForSingleObject и WaitForMultipleObjects также имеют значения таймаута, и эти таймауты реализуются с использованием того же механизма.

Если много потоков ждут таймеров, то ОС может запрограммировать аппаратный таймер на индивидуальное время для каждого потока, но это обычно приводит к тому, что потоки просыпаются в случайное время, а процессор так нормально и не засыпает. Энергоэффективность CPU сильно от времени его сна ( ), и случайные пробуждения тому не способствуют. Если несколько потоков синхронизируют или объединяют свои ожидания таймера, то система становится более энергоэффективной.

Существует множество способов объединения пробуждений, но основной механизм в Windows — глобальное прерывание таймера, тикающего с постоянной скоростью. Когда поток вызывает Sleep(n), то ОС запланирует запуск потока сразу после первого прерывания таймера. Это означает, что поток может в конечном итоге проснуться немного позже, но Windows — это не ОС реального времени, она вообще не гарантирует определённое время пробуждения (в любом случае, в это время ядра процессора могут быть заняты), поэтому вполне нормально проснуться чуть позже.

Интервал между прерываниями таймера зависит от версии Windows и железа, но на всех моих машинах он по умолчанию составлял 15,625 мс (1000 мс/64). Это означает, что если вызвать Sleep(1) в какое-то случайное время, то процесс будет разбужен где-то между 1,0 мс и 16,625 мс в будущем, когда сработает следующее прерывание глобального таймера (или через одно, если это сработало слишком рано).

Короче говоря, природа задержек таймера такова, что (если только не используется активное ожидание процессора, а его, ) ОС может пробуждать потоки только в определённое время с помощью прерываний таймера, а Windows использует регулярные прерывания.

Некоторым программам не подходит такой большой разброс в задержках ожидания (WPF, SQL Server, Quartz, PowerDirector, Chrome, Go Runtime, многие игры и т. д.). К счастью, они могут решить проблему с помощью функции , которая позволяет программе запросить меньший интервал. Есть также функция , которая позволяет устанавливать интервал меньше миллисекунды, но она редко используется и никогда не требуется, поэтому не буду больше её упоминать.

Десятилетия безумия


Вот сумасшедшая вещь: может вызвать любая программа, и она изменяет интервал прерывания таймера, при этом прерывание таймера — это глобальный ресурс.

Представим, что процесс А находится в цикле с вызовом Sleep(1). Это неправильно, но это так, и по умолчанию он просыпается каждые 15,625 мс, или 64 раза в секунду. Затем появляется процесс B и вызывает timeBeginPeriod(2). Это заставляет таймер срабатывать чаще, и внезапно процесс А просыпается 500 раз в секунду вместо 64 раз в секунду. Это безумие! Но именно так всегда работала Windows.

В этот момент, если бы появился процесс C и вызвал timeBeginPeriod(4), это ничего бы не изменило — процесс A продолжал бы просыпаться 500 раз в секунду. В такой ситуации правила устанавливает не последний вызов, а вызов с минимальным интервалом.

Таким образом, вызов timeBeginPeriod от любой работающей программы может установить глобальный интервал прерывания таймера. Если эта программа завершает работу или вызывает , то вступает в силу новый минимум. Если одна программа вызывает timeBeginPeriod(1), то теперь это интервал прерывания таймера для всей системы. Если одна программа вызывает timeBeginPeriod(1), а другая timeBeginPeriod(4), то всеобщим законом становится интервал прерывания таймера в одну миллисекунду.

4359fc83381af391677a892933706348.png
Это имеет значение, потому что высокая частота прерываний таймера — и связанная с ней высокая частота планирования потоков — может впустую расходовать значительную мощность CPU, .

Одним из приложений, которому необходимо планирование на основе таймера, является веб-браузер. В стандарте JavaScript есть функция , которая просит браузер вызвать функцию JavaScript через несколько миллисекунд. Для реализации этой и других функций Chromium использует таймеры (в основном WaitForSingleObject с таймаутами, а не Sleep). Это часто требует повышенной частоты прерываний таймера. Чтобы это не слишком сказывалось на времени автономной работы, Chromium недавно модифицировали таким образом, чтобы при работе от батареи .

timeGetTime


Функция возвращает текущее время, обновлённое прерыванием таймера. Процессоры исторически не очень хороши в ведении точного времени (их часы специально колеблются, чтобы не служить FM-передатчиками, и по другим причинам), поэтому для поддержания точного времени CPU часто полагаются на отдельные генераторы тактовых импульсов. Чтение с этих чипов стоит дорого, поэтому Windows поддерживает 64-битный счётчик времени в миллисекундах, обновляемый прерыванием таймера. Этот таймер хранится в общей памяти, поэтому любой процесс может дёшево считывать оттуда текущее время, не обращаясь к генератору тактовых импульсов. timeGetTime вызывает ReadInterruptTick, который по сути просто считывает этот 64-битный счётчик. Все просто!

Поскольку счётчик обновляется прерыванием таймера, мы можем его отследить и найти частоту прерывания таймера.

Новая недокументированная реальность


С выпуском Windows 10 2004 (апрель 2020 года) некоторые из этих механизмов слегка изменились, но очень запутанным образом. Сначала появились . На самом деле всё оказалось куда сложнее.

Первые эксперименты дали смешанные результаты. Когда я запустил программу с вызовом timeBeginPeriod(2), то показал интервал таймера 2,0 мс, но отдельная тестовая программа с циклом Sleep(1) просыпалась около 64 раз в секунду вместо 500 раз, как в предыдущих версиях Windows.

Научный эксперимент


Тогда я написал пару программ для изучения поведения системы. Одна программа ( ) просто сидит в цикле, вызывая timeBeginPeriod с интервалами от 1 до 15 мс. Она удерживает каждый интервал в течение четырёх секунд, а затем переходит к следующему, и так по кругу. Пятнадцать строк кода. Легко.

Другая программа ( ) запускает несколько тестов для проверки, как её поведение изменяется при изменении change_interval.cpp. Программа отслеживает три параметра.

  1. Она спрашивает ОС, каково текущее разрешение глобального таймера, используя .
  2. Она измеряет точность timeGetTime, вызывая его в цикле до тех пор, пока возвращаемое значение не изменится — и отслеживая величину, на которую оно изменилось.
  3. Она измеряет задержку Sleep(1), вызывая его в цикле в течение секунды и подсчитывая количество вызовов. Средняя задержка является просто обратной величиной числа итераций.

провёл для меня тесты на Windows 10 1909, а я провёл тесты на Windows 10 2004. Вот очищенные от случайных флуктуаций результаты:

dg1znqycc1cxw2kr4p74eijubqq.png


Это означает, что timeBeginPeriod по-прежнему устанавливает интервал глобального таймера во всех версиях Windows. Из результатов можно сказать, что прерывание срабатывает с такой скоростью по крайней мере на одном ядре процессора, и время обновляется. Обратите также внимание, что 2.0 в первой строке для 1909 года , затем 1.0 в Windows 7/8, а затем вроде опять вернулось к 2.0?

Однако поведение планировщика резко меняется в Windows 10 2004. Ранее задержка для Sleep(1) в любом процессе просто равнялась интервалу прерывания таймера, за исключением timeBeginPeriod(1), давая такой график:

98a7809df0e0350d99605ca25f71cb1b.png


В Windows 10 2004 соотношение между timeBeginPeriod и задержкой сна в другом процессе (который не вызывал timeBeginPeriod) выглядит странно:

17bb975faec3fd338e345d334726071f.png


Точная форма левой части графика неясна, но она определённо уходит в противоположную сторону от предыдущего!

Почему?

Последствия


Как было указано в обсуждении reddit и hacker-news, вероятно, левая половина графика представляет собой попытку максимально точно имитировать «нормальную» задержку, учитывая доступную точность глобального прерывания таймера. То есть с интервалом прерывания 6 миллисекунд задержка происходит примерно на 12 мс (два цикла), а с интервалом прерывания 7 миллисекунд — примерно на 14 мс (два цикла). Однако измерение фактических задержек показывает, что реальность ещё более запутанна. При прерывании таймера, установленном на 7 мс, задержка Sleep(1) в 14 мс даже не самый распространённый результат:

6c4a971df3892a1ee8064bbe954384b0.png


Некоторые читатели могут обвинить случайный шум в системе, но когда частота прерывания таймера 9 мс и выше, шум равен нулю, так что это не может быть объяснением. . Особенно противоречивыми кажутся интервалы прерывания таймера от 4 мс до 8 мс. Вероятно, измерения интервалов следует выполнять с помощью QueryPerformanceCounter, поскольку на текущий код беспорядочно влияют изменение правил планирования и изменение точности таймера.

Всё это очень странно, и я не понимаю ни логики, ни реализации. Может, это и ошибка, но я в этом сомневаюсь. Думаю, что за этим стоит сложная логика обратной совместимости. Но самый эффективный способ избежать проблем совместимости — это документировать изменения, желательно заранее, а здесь правки сделаны без какого-либо уведомления.

Это не повлияет на большинство программ. Если процесс хочет более быстрое прерывание таймера, то он сам должен вызвать timeBeginPeriod. Тем не менее, могут возникнуть следующие проблемы:

  • Программа может случайно предположить, что у Sleep(1) и timeGetTime одинаковое разрешение, а это теперь не так. Хотя, такое предположение кажется маловероятным.
  • Программа может зависеть от маленького разрешения таймера, которого не получает. Было несколько сообщений о — есть инструмент под названием и ещё один под названием . Они «исправляют» эти игры, повышая частоту прерываний таймера. Видимо, эти исправления больше не будут работать или будут работать не так хорошо. Возможно, это заставит разработчиков игр выпустить правильные патчи, но до тех пор изменение вызывает проблемы обратной совместимости.
  • В многопроцессной программе может повысить частоту прерываний таймера, а затем ожидать, что это повлияет на планирование дочерних процессов. Раньше это было разумное предположение, но теперь оно не работает. Именно так я сам узнал об этой проблеме. Продукт, о котором идёт речь, теперь вызывает timeBeginPeriod в каждом процессе, так что всё в порядке, но несколько месяцев программное обеспечение плохо работало по непонятной причине.

Жертва


Тестовая программа change_interval.cpp работает только в том случае, если никто не запрашивает более высокую частоту прерываний таймера. Поскольку и Chrome, и Visual Studio имеют привычку делать это, мне пришлось проделать большую часть моих экспериментов без доступа в интернет и . Кто-то предложил Emacs, но ввязываться в дискуссию выше моих сил.
 
Сверху Снизу